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We study theoretically the effect of spin-orbit coupling on quantum well excitons in a strong magnetic field.
We show that in the presence of an in-plane field component, the excitonic absorption spectrum develops a
double-peak structure due to hybridization of bright and dark magnetoexcitons. If the Rashba and Dresselhaus
spin-orbit constants are comparable, the magnitude of splitting can be tuned in a wide interval by varying the
azimuthal angle of the in-plane field. We also show that the interplay between spin-orbit and Coulomb inter-
actions leads to an anisotropy of exciton energy dispersion in the momentum plane. The results suggest a way
for direct optical measurements of spin-orbit parameters.
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I. INTRODUCTION

The role of spin-orbit �SO� interactions in magnetooptics
has been studied starting with the original work of Rashba
and co-workers.1 Most of the theoretical work was devoted
to the effect of the SO-induced nonparabolicity on cyclotron
resonance. In quantum wells �QWs�, the anticrossings of
Landau levels �LLs� due to SO coupling lead to an intricate
structure of the cyclotron resonance line shape due to the
interplay of Coulomb and SO interactions in two-
dimensional �2D� electron gas.2–4 In a strong tilted magnetic
field, such anticrossings occur when an in-plane component
of magnetic field is tuned to bring the Zeeman-split adjacent
LLs into resonance. While measurements of SO-induced
beats of Shubnikov–de Haas oscillations have long become a
standard method for determining SO constants in QWs,5

there are relatively few direct observations of SO effects in
optical spectroscopy; those include asymmetric spin-flip Ra-
man scattering6 and splitting of the cyclotron resonance ab-
sorption peak.7,8

In this paper, we study the effect of SO coupling on QW
excitons in a strong tilted magnetic field. 2D magnetoexci-
tons �MXs� are ideal objects for studying the Coulomb inter-
action effects.9–11 For sufficiently high fields, when the char-
acteristic Coulomb energy,

E0 =��

2

e2

�l
, �1�

is smaller than the single-particle cyclotron energy �c, the
relative degrees of motion are essentially frozen and Cou-
lomb interactions play the dominant role �here, l is the mag-
netic length corresponding to the normal field component
and � is the dielectric constant�. For example, while for
small center-of-mass �c.m.� momenta p, the MX dispersion
is quadratic, the MX mass is much heavier than that of the
constituent electron and hole by the factor �c /E0�1, as
measured in coupled QW experiments.12 The dominant role
of Coulomb correlations is also apparent in non-Markovian
ultrafast dynamics of MXs in the nonlinear optical
response.13,14

In the absence of SO coupling, optically active, or bright,
MXs �with spin projection of �1� are those with constituent
electron and hole at the nth level of their respective Landau

ladders.15 The SO interaction mixes bright and dark MXs
with different orbital and spin contents through the SO cou-
pling of single-particle LLs �see Fig. 1�. Such a mixing is
strong if the corresponding MX energies are brought close to
each other, e.g., with increasing tilt angle �. This exciton
resonance condition differs from that for electron spin reso-
nance by the difference between MXs Coulomb binding en-
ergies. Importantly, such exciton resonance can also occur at
finite c.m. momenta p; this drastically changes the MX dis-
persion, as discussed below.

There are two distinct types of SO couplings, one origi-
nating from bulk inversion asymmetry �Dresselhaus cou-
pling� and the other one from structural inversion asymmetry
along the growth direction �Rashba coupling�, which cause
the admixture of orbital states with opposite spins. An im-
portant distinction between electronic Rashba and Dressel-
haus SO terms is their different symmetry properties. The
former possesses an in-plane rotational symmetry, while the
latter does not.5 This lack of rotational invariance leads to an
in-plane momentum azimuthal anisotropy in the presence of

FIG. 1. �Color online� Schematic representation of MX states,
�00

�s �to the left�, excited between n=0 LLs with right/left polarized
light �s= � � in a tilted field. Near the resonance �Eq. �13�� states
�00

−s and �10
+s �to the right� are hybridized via electron SO coupling

�in first order� and SO-Coulomb coupling �in second order�.
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both SO terms16–18 that was recently reported in transport19,20

and spin relaxation21,22 experiments in QWs. In magnetic
field, where single-electron energy spectrum is dispersion-
less, the interference between Rashba and Dresselhaus terms
leads to a dependence of SO matrix elements on the in-plane
magnetic field orientation �.2 In quantum dots, such a depen-
dence results in a modulation of spin relaxation rate for dif-
ferent orientations of the in-plane field.23–27

We find that the effect of SO coupling on MXs is twofold.
First, the SO mixing of MX states causes anticrossings of
MX energy levels with changing �. For zero c.m. momen-
tum, p=0, such anticrossings lead to a splitting of excitonic
absorption peak, with peak-to-peak separation given by
single-particle SO anticrossing gap 	0. The splitting can be
changed in a wide range by varying �. This allows us to
distinguish the SO-induced MX anticrossings from those due
to other mechanisms such as heavy-light hole mixing in va-
lence band or orbital effect of strong in-plane field.28,15,29

Importantly, the angular dependence of the absorption peak
line shape would provide an independent way for direct mea-
surements of both Rashba and Dresselhaus SO parameters in
optical spectroscopy experiments. Our numerical calcula-
tions show that the splitting should be easily observed in
exciton absorption experiments in narrow-gap semiconductor
QWs, such as InSb, that are characterized by relatively large
electron SO coupling.30,31

The second effect of SO coupling is to alter the MX dis-
persion. At fixed values of �, the MX dispersions experience
anticrossing with changing c.m. momentum p. As a result, at
finite momentum, the dispersion curves are separated by the
anticrossing gap 	p. Remarkably, the interplay between SO
and Coulomb interactions leads to the MX momentum aniso-
tropy of 	p and hence of the MX dispersion. Furthermore,
the MX energy landscape in the p plane depends on the
in-plane field orientation �. In particular, for �= �� /4, the
locations of extrema in 	p and, accordingly, the pattern of
constant energy lines are insensitive to the values of SO pa-
rameters, while for all other � the pattern of equipotentials is
SO specific.

The paper is organized as follows. In Sec. II, we describe
electron and hole states in a tilted field in the presence of SO
coupling, while the corresponding exciton states are de-
scribed in Sec. III. The exciton absorption and energy disper-
sion, together with numerical calculations, are discussed in
Secs. IV and V, respectively. Section VI concludes the paper.

II. TWO-DIMENSIONAL ELECTRONIC STATES IN A
TILTED MAGNETIC FIELD IN THE PRESENCE OF

SPIN-ORBIT COUPLING

We start with the electronic spectrum in a QW in the
presence of SO interactions subjected to a tilted magnetic
field, B=B�+B� =B�x̂ sin � cos �+ ŷ sin � sin �+ ẑ cos ��,
where � is the tilt angle and � is the asimuthal angle with
respect to crystallographic axes of the �001� plane. We con-
sider the QW to be sufficiently narrow and the effect of an
in-plane field component on orbital motion to be negligibly
small. The electron Hamiltonian in the conduction band,
He=H0

e +HZ
e +HSO

e , is comprised of orbital term, H0
e

=�2 /2me, Zeeman term, HZ
e = 1

2g
e
*
B� ·B, and SO term,

HSO
e =HR

e +HD
e . Here, me and g

e
* are the electron effective

mass and g factor, respectively, 
B is the Bohr magneton,
� is the Pauli matrices vector, and �=−i� +eA is the in-
plane momentum �we use the Landau gauge, A= �0,xB��,
and set �=1 throughout�. Two contributions to HSO

e are
Rashba and Dresselhaus terms, HR

e = i��+�−−�−�+� and
HD

e =���+�++�−�−�, respectively,  and � being the corre-
sponding SO constants, where ��=�x� i�y and ��

= ��x� i�y� /2. Hole states in the valence band have, in gen-
eral, a more complicated structure due to the mixing of
heavy hole �HH� and light hole �LH� states by an in-plane
magnetic field.15 However, for narrow QW and low LLs that
we are interested in, the HH states are well separated from
the LH band so this mixing is weak.5 In this case, the in-
plane HH g factor is negligible, i.e., the total momentum

Ĵ is quantized along the z axis, Jz= �3 /2, even in the pres-
ence of an in-plane field component B�. The HH Zeeman
Hamiltonian HZ

h therefore has the form HZ
h =− 1

2g
h
*
BB��z,

where the eigenvalues of �z correspond to the two projec-
tions Jz and g

h
* is the effective HH g factor in the growth

direction. Accordingly, we adopt a simple one-band HH
Hamiltonian, Hh=H0

h+HZ
h +HSO

h , where HSO
h is the SO term

that is cubic in momentum, HSO
h = ĩ��+�−

3 −�−�+
3�

− �̃��+�−�+�−+�−�+�−�+�, ̃ and �̃ being valence band
SO couplings.32

In contrast, in the conduction band, the “natural” spin
quantization axis is along the total field B. At the same time,
the above form of electronic SO terms applies when x, y, and
z directions are aligned with the sample crystallographic
axes. Therefore, correct expressions for the SO terms in a
tilted field are obtained upon rotation of spin operators to
align the spin-quantization axis with the total field:27

��→e�i���� cos2�� /2�−�� sin2�� /2�+ ��z /2�sin �� and
�z→�z cos �− ��++�−�sin �. In this basis, HSO

e reads

HSO
e =

�+

2
��+��+ + �− cos �� − �−��+ − �− cos ��

+ �z�− sin �� + H.c., �2�

where �����=�ei�� ie−i�. In a tilted field, no analytical
expression exists for eigenstates of He, but we only need

matrix elements tnn�
ss� ��ns	HSO

e 	n�s�
 between the eigenstates
of H0

e +HZ
e . The latter are given by products of Landau wave

functions and two-component spinors, �pyn
s �r�=�pyn�r��0

s

with �̃0
+= �10� and �̃0

−= �01�; the corresponding energies are

Ens
e = �c

e�n + 1/2� − s�z
e/2, �3�

where n=0,1 , . . . and s= �1 are LL number and spin, and
�c

e=eB� /me and �z
e=−g

e
*
BB are cyclotron and Zeeman fre-

quencies, respectively �hereafter, we assume negative g fac-
tor�. For adjacent LLs, using �n+1	�+	n
= i�2�n+1� / l, Eq.
�2� yields

tn+1,n
�� = �

i

l
�n + 1

2
��+��� � �−���cos �� ,
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tn,n+1
�� = �

i

l
�n + 1

2
��+

*��� � �−
*���cos �� . �4�

In a strong field, the characteristic SO energy is small com-
pared to the level separation, 	�� 	 / l��c

e, and accordingly,
the SO-induced level admixture is, in general, weak. How-
ever, the mixing gets strongly enhanced when the spacing
between adjacent LLs with opposite spins is reduced, e.g., by
varying the Zeeman energy with the tilt angle � �see Fig. 1�.
In this case, the SO coupling leads to level anticrossing at
	�c

e−�z
e	�	��	 / l. The anticrossing gap between, e.g., lowest

resonant levels, 	0=2	t10
+−	=2	�1+ 	HSO

e 	0− 
	,

	0 = 2�22

l2 sin4 �

2
+

2�2

l2 cos4 �

2
+

�

l2 sin2 � sin 2� ,

�5�

depends on the orientation of the in-plane field component,2

i.e., with � fixed by the resonance condition, �c
e=�z

e, the gap
varies with azimuthal angle �. Note that for �=−� /4 and
� /=tan2�� /2�, there is destructive interference between the
two SO terms in the matrix elements tn+1,n

�� , and 	0 vanishes
in the first order in SO coupling; higher-order corrections
involving SO coupling to upper LLs are suppressed as
�	��	 / l�c

e�2�1. For tn,n+1
�� , the above condition applies upon

replacement ↔�.
In contrast, in the valence band, the negligible value of

in-plane HH g-factor precludes occurrence of similar reso-
nances between neighboring LLs. For g

h
*�0 �e.g., in InAs or

InSb�, the lowest state 	0− 
 is only weakly coupled, via HSO
h ,

to 	1+ 
 �via Dresselhaus term� and 	3+ 
 �via Rashba term�
states, while the upper state 	0+ 
 is not coupled to other LLs;
for g

h
*�0 �e.g., in GaAs�, 	0+ 
 is the lowest state.

III. MAGNETOEXCITON STATES IN THE PRESENCE OF
SPIN-ORBIT COUPLING

We now turn to exciton states in a tilted field described by
the Hamiltonian H=He+Hh+Heh, where Heh is the Coulomb
interaction. We assume that the perpendicular field compo-
nent is sufficiently strong, �c

e�E0� 	��	 / l, so that Coulomb-
induced inter-LL transitions are relatively weak. In the
absence of SO coupling, exciton states are expressed

via free electron-hole �e-h� basis functions, �pnm
ss� �r ,r��

=�pnm�r ,r��Sss�, where r and r� are electron and hole coor-
dinates, respectively. The orbital part, corresponding to an
electron at the nth and a hole at the mth LLs, is given
by9,11,33

�pnm�r,r�� =
1

L
eip·R−iXy/l2�nm�r̃ + l2p � ẑ� , �6�

where p is the c.m. momentum of an e-h pair, r̃=r−r�, R
= �r+r�� /2 are the relative and average coordinates, respec-
tively �L is system size�, and

�nm�z� =�m!

n! � iz
�2l

n−m

Lm
n−m� 	z	2

2l2 e−	z	2/4l2

�2�l2
�7�

is the relative motion wave function �Ln
�x� is the Laguerre

polynomial, z=x+ iy�. The spin part is a diadic product of

electron and HH spinors, Sss�=�0e
s

� �0h
s� , with electron and

hole spin-quantization axes along B and B�, respectively.
For E0 /�c

e�1, the MX eigenstates are obtained perturba-
tively in the basis of Eq. �6�. In the first order, i.e., neglecting
inter-LL transitions, the wave function does not change,
while the MX energy is given by

Enm
ss��p� = Eg + Ens

e + Ems�
h + Unn

mm�p� , �8�

where Ens
e,h are given by Eq. �3�, Eg is the band gap, and

Unn
mm�p� is the diagonal matrix element of Coulomb potential

V�r−r��=e2 /�	r−r�	,

Unn�
mm��p� = −� drdr��pnm

* �r,r��V�r − r���pn�m��r,r�� ,

�9�

with lower and upper indices referring, respectively, to elec-
tron and hole quantum numbers.

The SO coupling causes the admixture of MX states with
different orbital and spin contents. The corresponding matrix
element,

T���
����p� � �p��	�HSO

e + HSO
h �	p����
 , �10�

is a sum of electron and hole SO contributions with � and
�= �ss�� denoting sets of orbital and spin indices, respec-
tively. In the first order in E0 /�c

e, as Coulomb-induced
inter-LL transitions are suppressed, the orbital part of 	p��

coincides with Eq. �6�. In this case, the excitonic SO transi-

tion operator reduces to the sum of tensor products T̂= tê

� Iĥ+ tĥ � Iê, where t̂e,h are single-particle SO transition op-

erators, and Îe,h are unit tensors in corresponding orbital and
spin indices.

There are four MX states at the lowest LL corresponding
to all possible orientations of electron spin and hole total
momentum, which are mixed with higher energy states by
SO coupling in conduction and valence band. Note that, due
to large energy separation between the corresponding states,
the smallness of in-plane HH g factor results in only weak
SO mixing in the presence of in-plane field. Therefore, in the
following, we consider only the effect of conduction band
SO mixing. The state �p00

+s , with s=� for either hole polar-
ization, is weakly coupled, via electronic SO matrix elements
Eq. �4�, to the state �p10

−s that lies significantly higher in
energy due to a large Zeeman splitting �z

e �see Fig. 1�. At the
same time, the state �p00

−s couples to �p10
+s ; their energy sepa-

ration �p is given by

�p = E10
+s�p� − E00

−s�p� = �c
e − �z

e + U11
00�p� − U00

00�p� , �11�

where

U00
00�p� = − E0e−xI0�x� ,
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U11
00�p� = − E0e−x��1

2
+ xI0�x� − xI1�x�� , �12�

are the relevant Coulomb matrix elements with x= p2l2 /4
�In�x� is the modified Bessel function�. Note that, for MXs,
the resonance condition �p=0 is Coulomb shifted from
single-particle one; in particular, for p=0, it reads

�z
e − �c

e = E0/2. �13�

In the in-plane field domain where 	�p	�	t10
+−	, the admixture

is strong and the new eigenenergies are

E�
s �p� =

1

2
�E00

−s�p� + E10
+s�p� � ��p

2 + 	2� , �14�

where, in the absence of inter-LL transitions, 	=	0 coin-
cides with single-particle anticrossing gap �Eq. �5�� and is p
independent. The corresponding eigenstates are superposi-
tions of unperturbed exciton states with close energies,

�p�
s �r,r�� = ap

��p00
−s �r,r�� + bp

��p10
+s �r,r�� , �15�

where the coefficients ap
� and bp

� are determined by diago-
nalizing the full Hamiltonian H=He+Hh+Heh,

ap
− = bp

+ =
1

�1 + e−2�p
, ap

+ = − b
p

−* =
ei�

�1 + e2�p
. �16�

Here, �=arg�t10
+−� is the phase of the electron SO matrix el-

ement, and the parameter �p, defined by sinh �p=�p /	, is
the detuning in units of the anticrossing gap that character-
izes the proximity to the resonance. Note that outside of the
resonance region, 	�p	�	 �but still 	�p	��c

e�, we have ap
and bp equal 0 or 1 so that the two excitons are almost
decoupled.

IV. MAGNETOEXCITON ABSORPTION

A circularly polarized light incident normal to the plane
can excite only e-h pairs with total spin projection �= �1
for right/left polarized photon, respectively. The optically
active excitations with �= �1 are an electron and a hole at
the nth LLs with Jz= �3 /2 for hole and sz= �1 /2 for
electron.15 The corresponding wave functions are �n

��r ,r��
=�0nn�r ,r��S�, where the orbital part is taken at p=0 due
to negligible momentum of incident photon, and in the
spin part, S�=�0h

�
� �e

�, the spinor �e stands for electron spin
projection perpendicular to the plane. In the basis with
electron spin-quantization axis along total field B, we
have �e

+=�0e
+ cos�� /2�−�0e

− sin�� /2� and �e
−=�0e

+ sin�� /2�
+�0e

− cos�� /2�. In the following, we restrict ourselves to op-
tical excitations with energies close to n=0 LLs. The exci-
tonic absorption coefficient has the form

A���� � �


	C
�	2��� − E� , �17�

where the sum runs over MX eigenstates with energies E

and p=0 � incorporates both orbital and spin indices�; the
corresponding oscillator strengths are given by

C
� = 
� drdr��

†�r,r���0
��r,r�� , �18�


 being the interband dipole matrix element.
Consider first absorption of right circularly polarized

light. The state �0
+=�000

−+ cos�� /2�+�000
++ sin�� /2� is not an

eigenstate of the system because of SO mixing of constituent
exciton states with upper LLs. The state �000

++ is only weakly
coupled to �010

−+ , as mentioned above, and is, in a good ap-
proximation, an eigenstate contributing oscillator strength

2 sin2�� /2� into sum �17�. Correspondingly, the absorption
spectrum exhibits a peak at frequency E00

++�0� that appears
only in a tilted field. On the other hand, in the resonance
region, the state �000

−+ is strongly coupled to �010
++ �see Fig.

1�, so that eigenstates are �0�
+ , given by Eq. �15�, yielding

	C�
+ 	2 = 
2 cos2��/2�	a0

�	2 =

2 cos2��/2�

1 + e�2�0
, �19�

with sinh �0=�0 /	0= ��z
e−�c

e−E0 /2� /	0. As a result, the ab-
sorption spectrum exhibits double-peak structure at energies
E�

+ �0� given by Eq. �14�.
Similarly, for left-polarized absorption, the bright state is

decomposed as �00
− =�000

+− cos�� /2�−�000
−− sin�� /2�. The

state �000
+− is weakly coupled to higher-energy states and so

contributes oscillator strength 
2 cos2�� /2� into sum �17�
corresponding to the absorption peak at frequency E000

+− . At
the same time, in the resonance region, the state �000

−− is
strongly mixed with �010

+− , and we obtain

	C�
− 	2 = 
2 sin2��/2�	a0

�	2 =

2 sin2��/2�

1 + e�2�0
. �20�

The corresponding absorption spectrum line shape develops
a double-peak structure at energies E�

− �0�. The peak ampli-
tude differs by the factor tan2�� /2� from that of its right-
polarized counterpart; the absorption is nonzero only in the
presence of in-plane field component.

Thus, in a tilted field, the SO coupling leads to a splitting
of the MX absorption peak when the energies of MXs with
different spin contents are brought into resonance, e.g., by
varying in-plane field component �Eq. �13��. The peak-to-
peak separation is given by the SO-induced anticrossing gap
in the conduction band �Eq. �5�� that can be changed in a
wide range by varying the in-plane azimuthal angle � with
respect to �100� axis. The maximal and minimal values are
achieved for �= �� /4,

	0
� =

�2

l
��1 −

B�

B
 � ��1 +

B�

B
� . �21�

Remarkably, from measured values of 	0
�, one can determine

both the magnitudes and the relative sign of SO couplings 
and � �for opposite relative sign, values �21� are achieved for
�= �� /4�. The splitting disappears, 	0

−=0, at



�
=

B + B�

B − B�

, �22�

and �=−� /4, corresponding to the destructive interference
between Rashba and Dresselhaus terms.
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In QWs, the relative strength of each type of spin-orbit
interaction can be tuned in a wide range. The 2D Dresselhaus
coupling in a narrow QW is determined mainly by its width
d, �=�� �

d �2, where � is a material dependent parameter �the
effect of cubic terms is relatively small�. On the other hand,
the Rashba coupling parameter can be changed with applied
gate voltage,5 �r41

6c6cEz, where coefficient r41
6c6c is material

dependent and Ez is the electric field perpendicular to the
plane. In materials with large r41

6c6c �e.g., r41
6c6c=523 e Å2 for

InSb �Ref. 5��, the above condition for destructive interfer-
ence of Rashba and Dresselhaus terms can be easily
achieved.

Our numerical calculations were performed for
d=10 nm wide InSb QW in a tilted field whose normal com-
ponent was taken to be B�=4.0 T, corresponding to
�c

e�33.0 meV and E0�8.5 meV. Since for InSb �
=160 eV Å3,34 we have for Dresselhaus coupling �
�157 meV Å corresponding to the characteristic SO energy
of � / l�1.2 meV. Other parameters for InSb used were me
=0.014m0 �m0 is free electron mass�, effective electron g
factor g

e
*=−51, dielectric constant �=16.5, and MX homo-

geneous broadening �=1.0 meV.30 In order to assess the ac-
curacy of the resonant level model, we included SO coupling
between all four lowest spin-split electronic LLs but, in the
anticrossing region, detected virtually no difference for the
set of parameters used.

In Figs. 2 and 3, we show absorption spectra for right
circularly polarized light in the frequency range correspond-
ing to excitation of MX comprised of an n=0, Jz= +3 /2 LL
hole and an electron hybridized between n=0, sz=−1 /2 and

n=1, sz=1 /2 LLs. The frequency is measured relative to
�=Eg+ ��c

h+�z
h+�c

e� /2 so the lower energy single peak cor-
responding to excitation of �000

++ MX state is not shown. The
Rashba SO parameters are taken as =180 meV Å for Fig. 2
and =302 meV Å for Fig. 3; the latter value corresponds to
the destructive interference condition �see below�. The evo-
lution of the absorption spectra with an in-plane magnetic
field at azimuthal angle value �=0 is shown in panels �a�.
When the tilt angle � lies within a narrow interval �5°
around the resonance value, determined by Eq. �13�, the
spectrum develops a double-peak structure with maxima cor-
responding to the excitation of hybrid states with energies
E�

+ �0�. The peaks are split symmetrically at the resonance
that takes place at �=71.6° �B� /B�=3.0� when the states
�000

−+ and �010
++ contribute equally to the final state. As one

moves away from the resonance, the double-peak structure
gradually transforms into a single peak with a weak shoulder.

The absorption spectra line shapes exhibit strong depen-
dence on the in-plane field orientation �. This is illustrated in
panels �b� for two different Rashba SO parameter values. For
=302 meV Å, corresponding to destructive interference be-
tween the two SO terms, Eq. �22�, the splitting disappears for
in-plane field orientation �=−� /4, while for other values of
�, it is quite pronounced �see Fig. 3�b��. For general values
of SO coupling, the splitting is visible for all values of �, as
shown in Fig. 2�b�. The large value of peak-to-peak separa-
tion, up to 0.2�c

e�6.0 meV for �=� /4, is due to the strong
SO coupling in InSb. Note that, at fixed �, the SO-induced
splitting increases with B�.

Importantly, the magnitude of excitonic absorption peak
splitting is determined solely by single-particle SO param-
eters encoded in 	0��� �Eq. �5��. This suggests a new way

FIG. 2. �Color online� Exciton absorption spectrum for the right
circularly polarized light �a� for �=0 at several values � and �b� for
�=71.6° at several values of �. Spectra are calculated with
�=157 meV Å and =180 meV Å.

FIG. 3. �Color online� Same as Fig. 2 but with =302 meV Å
satisfying destructive interference condition �Eq. �22��.
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for direct determination of electron SO constants from opti-
cal measurements by monitoring the evolution of double-
peak structure with varying in-plane field orientation �. For
example, from maximal and minimal peak-to-peak separa-
tion 	0

�, given by Eq. �21�, the SO coefficients are deduced
as

�

�
� =

l

2�2

	0
+ � 	0

−

1 � B�/B
. �23�

V. EXCITON ENERGY DISPERSION AND ANGULAR
ANISOTROPY

We now turn to the effect of SO coupling on the MX
dispersion. As in the case of absorption, the role of SO cou-
pling becomes important near the resonance, i.e., when the
energy separation between MX eigenstates �Eq. �15��,

E+
s �p� − E−

s �p� = ��p
2 + 	2, �24�

becomes of the order of the characteristic SO energy:
�p�	, with �p given by Eq. �11�. Note, however, that the
latter condition can also be achieved by changing the MX
momentum at a fixed tilt angle �, in contrast to the p=0 case
in absorption where the resonance �Eq. �13�� could be
reached only by changing Zeeman energy with the in-plane
field component. Thus, as �p passes through the resonance,
�p=0, the energy dispersions of the MX states �p�

s experi-
ence an anticrossing as a function of momentum. In the
absence of inter-LL transitions, the anticrossing gap 	 coin-
cides with the single-particle gap 	0��� and is p indepen-
dent, as mentioned in Sec. III. Consequently, in this approxi-
mation, the dispersion of the MX eigenstates depends on the
in-plane field orientation � but remains isotropic with respect
to the MX momentum orientation p.

Situation changes drastically when Coulomb-induced
inter-LL transitions are turned on. In the absence of the SO

coupling, the MX energy Enm
ss� acquires a correction,

�Enm
ss��p� = �

n�m�

	Un�n
m�m�p�	2

Enm
ss��p� − En�m�

ss� �p�
. �25�

In the case of E0��c
e, this correction slightly changes the

energy difference �p and, accordingly, merely shifts the reso-
nance position, �p=0. On the other hand, the LL mixing
gives rise to a new contribution into the SO matrix element
�Eq. �10��, originating from the interplay between SO and
Coulomb couplings. Indeed, the corresponding MX wave

functions �pnm
ss� acquire a correction,

��pnm
ss� = �

n�m�

Un�n
m�m�p�

Enm
ss��p� − En�m�

ss� �p�
�pn�m�

ss� . �26�

Then, the matrix elements of HSO
e between states

�pnn
�s +��pnn

�s and �pn+1,n
�s +��pn+1,n

�s take the form

Tn+1,n
�� = tn+1,n

�� + tn+1,n+2
�� Un+2,n

nn

En+2,n
�s − Enn

�s +
Un+1,n−1

nn

En+1,n
�s − En−1,n

�s tn−1,n
�� ,

�27�

where we omitted hole indices in T and neglected the higher-
order corrections. The first term in the right hand side of Eq.
�27� originates from the direct SO coupling of electronic
states 	n− 
 and 	n+1, + 
, given by Eq. �4�. The second term,
in turn, describes the coupling between the same levels via a
two-step process: the electron is first promoted to the
	n+2,−
 state by the hole Coulomb potential, and then
makes SO-transition down to the 	n+1, + 
 state �see Fig. 1�.
The last term describes a similar process involving the
�n−1�th LL as the intermediate state. Note that for n=0, the
last term is absent and the SO matrix element reduces to

T10
+−�p� = t10

+− + t12
+− U20

00�p�
E20

−s�p� − E00
−s�p�

, �28�

where the Coulomb matrix element is given by

U20
00�p� = e2i�p

E0

�2
� pl

2
2

f�p� . �29�

Here, �p=arg�p� is polar angle of the 2D exciton momen-
tum, and f�p�=e−p2l2/4�I0�p2l2 /4�− �1+ �2 / p2l2��I1�p2l2 /4�� is
a scalar function of the order 1 normalized to f�0�=3 /4.
Importantly, although the second term in Eq. �28� is para-
metrically small by the factor E0 /�c

e, as compared to the first
one, it introduces an explicit dependence on the orientation
of p into the anticrossing gap: 	p=2	T10

+−�p�	�	0+	p
A,

where

	p
A =

E0f�p�
�c

e	0

�C�px
2 − py

2� + 2Dpxpy� �30�

is the anisotropic correction to the gap, and p-independent
coefficients are given by

C��� =
1

4
�2 + �2�sin2 � + ��cos4 �

2
+ sin4 �

2
sin 2� ,

D��� = � cos � cos 2� . �31�

Thus, near the resonance, i.e., in a narrow ring in the p plane
determined by the condition 	�p /	p 	 �1, the MX dispersion
is anisotropic: E+

s �p�−E−
s �p��	0+	p

A. The relative
magnitude of the anisotropic energy correction is
	p

A /E0��	0 /�c
e��pl /2�2; outside of the resonance region,

	�p /	p 	 �1, anisotropy is negligibly small.
In Fig. 4, we plot the MX dispersions �Eq. �14�� along the

x axis of the p plane for different in-plane field orientations
�. The magnitudes of the normal and in-plane field compo-
nents are taken as B�=4.0 T and B� =11.3 T, corresponding
to the tilt angle �=70.5°. For the SO parameters of Fig. 2�a�,
=180meV Å and �=157meV Å, the resonance occurs at a
finite momentum pl�1 �see Fig. 4�a��. At this momentum,
the dispersions E+

s �p� and E−
s �p� show an anticrossing as px

sweeps through the resonance region, with about factor of 2
gap variation for different �. The gap can be strongly re-
duced by tuning the Rashba coupling , e.g., with the gate
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voltage.5 This is illustrated in Fig. 4�b�, where the MX dis-
persions were calculated with larger =320meV Å that sat-
isfies, at this value of �, the destructive interference condi-
tion �Eq. �22��. It can be seen that the gap practically
disappears for �=−� /4; the effect of coupling to nonreso-
nant LLs �included in the calculation� is undetectable for the
chosen parameters.

In Figs. 5 and 6, we show contour plots, in the p plane, of
the anticrossing gap 	p, and MX energy difference �Eq. �24��
for the in-plane field orientations �=� /4 and �=0. The gap,
shown in panels �a�, exhibits alternating minima and maxima
in a ringlike region pl=0.5–3.5 for the chosen SO parameter
values �same as in Figs. 2�a� and 4�a��; the maximal variation
of 	p is about 4% that is comparable to the ratio
� ,�� / �l�c

e�. For E+
s −E−

s , the anisotropy manifests itself in
the elliptical shape of equipotential lines in the p plane
�panel �b��. Away from the resonance region, i.e.,
�p�	p, the MX spectrum is isotropic.

Note that the anisotropic landscape of MX energy in the p
plane depends on the in-plane field orientation. For
�= �� /4, we have D=0 in Eq. �30�, so that the extrema of
	p, as well as the foci of equipotentials, are located on px
and py axes ��p=0, �� /2� regardless of the  and � mag-
nitudes �see Fig. 5 for �=� /4�. For all other values of �,
these locations are shifted from px and py axes, and the land-
scape of E�

s �p� depends on the values of  and � �see Fig. 6
for �=0�. Note finally that the anisotropy of the MX disper-
sion is more pronounced for �=� /4 due to the largest con-
structive interference between Rashba and Dresselhaus terms
for this angle.

VI. CONCLUSIONS

We have shown that, in a tilted magnetic field, the spin-
orbit coupling can significantly change the orbital and spin
content of 2D magnetoexcitons. By causing transitions be-
tween Landau levels of constituent electrons and holes, SO

FIG. 4. �Color online� Energy dispersion of MX eigenstates
E�

s �p� �upper and lower curves, respectively� at �=157 meV Å and
=180 meV Å �a� and =320 meV Å �b� are plotted for �=70.5°
and different �. Dotted lines: dispersions E10

++�p� and E00
−+�p� in the

absence of SO coupling.

FIG. 5. �Color online� Contour plots in p plane of 	p /E0 �a� and
�E+

s �p�−E−
s �p�� /E0 �b� at �=157 meV Å and =180 meV Å are

shown for �=69.6° and �=� /4.

FIG. 6. �Color online� Same as Fig. 5 but with �=0.
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interaction alters the optical selection rules. This leads to a
splitting of the exciton absorption peak when the in-plane
field amplitude is tuned to the resonance between bright and
dark exciton energies. The splitting magnitude can be varied
in a wide range by changing the in-plane field orientation,
making possible direct optical measurements of both Rashba
and Dresselhaus SO parameters. We also found that the in-
terplay between SO and Coulomb interactions leads to an
anisotropy of the exciton energy dispersion that can be, in
principle, detected in coupled-QW experiments.12

Although our consideration was restricted to the lowest
LL MXs, the extension to higher LL is straightforward. In
fact, the SO splitting of the exciton absorption peak should
be larger for higher n due to the larger electronic SO matrix
elements �Eq. �4��. It should be noted that, for higher LLs,
there are also anticrossings due to other effects of the strong

in-plane field such as, e.g., valence band heavy-light hole
mixing or Coulomb coupling of LLs from different
subbands.15,28,29 However, these anticrossings are insensitive
to the in-plane field orientation and, therefore, can be easily
distinguished from those caused by SO coupling. Finally, this
effect is most prominent in narrow-gap semiconductor QWs
that are characterized by a strong SO coupling. However, it
could be observable in other materials too, e.g., in GaAs
where the resonance condition can be achieved with the in-
plane field in the range of 60–70 T.

ACKNOWLEDGMENTS

This work was supported in part by NSF under Grant No.
DMR-0606509 and EPSCOR program and by DoD under
Contract No. W912HZ-06-C-0057.

1 E. I. Rashba, Fiz. Tverd. Tela �Leningrad� 2, 1224 �1960� �Sov.
Phys. Solid State 2, 1109 �1960��; Y. A. Bychkov and E. I.
Rashba, Pis’ma Zh. Eksp. Teor. Fiz. 39, 66 �1984� �JETP Lett.
39, 78 �1984��; J. Phys. C 17, 6039 �1984�.

2 V. I. Fal’ko, Phys. Rev. B 46, 4320 �1992�.
3 V. I. Fal’ko, Phys. Rev. Lett. 71, 141 �1993�.
4 P. Tonello and E. Lipparini, Phys. Rev. B 70, 081201�R� �2004�.
5 R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional

Electron and Hole Systems �Springer, Berlin, 2003�, and refer-
ences therein.

6 D. Richards and B. Jusserand, Phys. Rev. B 59, R2506 �1999�.
7 M. Manger, E. Batke, R. Hey, K. J. Friedland, K. Köhler, and P.

Ganser, Phys. Rev. B 63, 121203�R� �2001�.
8 Yu. B. Vasil’ev, S. D. Suchalkin, S. V. Ivanov, B. Ya. Mel’tser,

and P. S. Kop’ev, Pis’ma Zh. Eksp. Teor. Fiz. 79, 674 �2004�
�JETP Lett. 79, 545 �2004��.

9 I. V. Lerner and Yu. E. Lozovik, Zh. Eksp. Teor. Fiz. 78, 1167
�1980� �Sov. Phys. JETP 51, 588 �1980��.

10 A. B. Dzyubenko and Yu. E. Lozovik, Fiz. Tverd. Tela �Lenin-
grad� 26, 1540 �1984� �Sov. Phys. Solid State 26, 938 �1984��.

11 D. Paquet, T. M. Rice, and K. Ueda, Phys. Rev. B 32, 5208
�1985�.

12 L. V. Butov, C. W. Lai, D. S. Chemla, Yu. E. Lozovik, K. L.
Campman, and A. C. Gossard, Phys. Rev. Lett. 87, 216804
�2001�.

13 V. Chernyak, S. Yokojima, T. Meier, and S. Mukamel, Phys. Rev.
B 58, 4496 �1998�.

14 T. V. Shahbazyan, N. Primozich, and I. E. Perakis, Phys. Rev. B
62, 15925 �2000�.

15 G. E. W. Bauer and T. Ando, Phys. Rev. B 38, 6015 �1988�.
16 R. Eppenga and M. F. H. Schuurmans, Phys. Rev. B 37, 10923

�1988�.
17 E. A. de Andrada e Silva, Phys. Rev. B 46, 1921 �1992�.
18 N. S. Averkiev and L. E. Golub, Phys. Rev. B 60, 15582 �1999�.

19 J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-
Geller, D. Goldhaber-Gordon, K. Campman, and A. C. Gossard,
Phys. Rev. Lett. 90, 076807 �2003�.

20 S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P.
Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W.
Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 92,
256601 �2004�.

21 J. Kainz, U. Rössler, and R. Winkler, Phys. Rev. B 68, 075322
�2003�.

22 N. S. Averkiev, L. E. Golub, A. S. Gurevich, V. P. Evtikhiev, V.
P. Kochereshko, A. V. Platonov, A. S. Shkolnik, and Y. P. Efi-
mov, Phys. Rev. B 74, 033305 �2006�.

23 V. N. Golovach, A. Khaetskii, and D. Loss, Phys. Rev. Lett. 93,
016601 �2004�.

24 V. I. Fal’ko, B. L. Altshuler, and O. Tsyplyatev, Phys. Rev. Lett.
95, 076603 �2005�.

25 J. Könemann, R. J. Haug, D. K. Maude, V. I. Fal’ko, and B. L.
Altshuler, Phys. Rev. Lett. 94, 226404 �2005�.

26 P. Stano and J. Fabian, Phys. Rev. Lett. 96, 186602 �2006�.
27 O. Olendski and T. V. Shahbazyan, Phys. Rev. B 75, 041306�R�

�2007�.
28 S. -R. Eric Yang and L. J. Sham, Phys. Rev. Lett. 58, 2598

�1987�.
29 Y. D. Jho, F. V. Kyrychenko, J. Kono, X. Wei, S. A. Crooker, G.

D. Sanders, D. H. Reitze, C. J. Stanton, and G. S. Solomon,
Phys. Rev. B 72, 045340 �2005�.

30 N. Dai, F. Brown, R. E. Doezema, S. J. Chung, and M. B. San-
tos, Phys. Rev. B 63, 115321 �2001�.

31 G. A. Khodaparast, R. E. Doezema, S. J. Chung, K. J. Goldam-
mer, and M. B. Santos, Phys. Rev. B 70, 155322 �2004�.

32 D. V. Bulaev and D. Loss, Phys. Rev. Lett. 95, 076805 �2005�.
33 C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 �1984�.
34 C. F. Destefani and S. E. Ulloa, Phys. Rev. B 72, 115326 �2005�.

OLENDSKI, WILLIAMS, AND SHAHBAZYAN PHYSICAL REVIEW B 77, 125338 �2008�

125338-8


